Crank length issue

Back by popular demand, the general all-things Road forum!

Moderator: robbosmans

Post Reply
Sharil
Posts: 32
Joined: Tue Mar 29, 2011 9:20 am

by Sharil

Am between 172.5 or 175 mm of crank length and my legs length are 88cm (measuring model on competitive cyclist). I know there are some pros and cons between the two but what should I pick in your opinion?

User avatar
Arky
Posts: 522
Joined: Sun Sep 23, 2007 5:06 am

by Arky

172.5 is your safest bet. Both will probably work with no problem.

by Weenie


Visit starbike.com Online Retailer for HighEnd cycling components
Great Prices ✓    Broad Selection ✓    Worldwide Delivery ✓

www.starbike.com




diegogarcia
Posts: 571
Joined: Sat Apr 24, 2010 7:31 pm

by diegogarcia

I run 165 on my Venge as ride akin to a TT bike and 170mm on my Tarmac as this is my climbing bike. I feel that the slightly (5mm) arms gives me a little more torque going up. Though hand on heart, after a few miles on each bike, once dialled in, I don't really notice a difference aside from my pelvis opening up, thus flattening the back on the Venge. And yes, I have a 29 inch inseam sadly :? , but I make it work.... :|, to a point :thumbup:

User avatar
STARNUT
Posts: 3385
Joined: Sun Jun 19, 2005 6:43 am
Location: Hilly, Hot, and Windy

by STARNUT

For many athletes, the idea “longer is better” has changed in part because of Dr. Jim Martin’s 2001 study titled “Determinants of maximal cycling power: crank length, pedaling rate and pedal speed” (Eur J Appl Physiol (2001) 84: 413-418). Jim’s study involved 16 bike racers of various heights doing maximal sprint power tests, typically less than four seconds duration. During the study, they repeated the efforts while systematically testing the following crank lengths: 120, 145, 170, 195, and 220mm. Believe it or not, the test results showed no statistical difference in maximum power among the three middle crank lengths (145, 170 and 195mm). The saddle height (measured to the pedal) was maintained throughout and the researchers did not adjust fore-aft saddle position or handlebar height despite changes in pedal-to-knee relationship and handlebar drop with the various crank lengths. For years crank length tests had been inconclusive and the general working knowledge came more from experience and intuition than science. Now athletes can choose the crank length they like without worrying they’re affecting power.

With the leverage-dependency myth debunked to a certain degree, it was the application of these lessons which really drove the value of this study. The figure above graphically shows how the aerodynamic drag area (CdA) changed when four pro athletes tested multiple crank lengths in the wind tunnel. (Keep in mind lower CdA is better.) Rider1’s CdA increased (from 0.271 to 0.277 m2) when he changed from longer to shorter cranks (from 180 to 175mm), but the other three riders’ CdA stayed the same or decreased slightly when changing from longer to shorter cranks. The crank length and CdA data for each athlete is listed in the table below.

With maximum power essentially unaffected by a wide range of reasonable crank lengths, athletes are now free to choose crank length based on other criteria. Convenience (your might already have a serviceable crank on your bike), comfort, pedal clearance (to the ground), toe overlap; all of these are affected by crank length. However, what is now understood is that, especially in an aero riding position, shorter cranks can sometimes alleviate a common fit problem: if the hip angle is too tight at the top of the pedal stroke, the athlete can be uncomfortable, or is unable to produce maximum power at the top of the pedal stroke.

Even in athletes with no existing fit problem, some choose shorter cranks in order to further lower the torso by lowering the arm pads. Perhaps this is not a surprise, but the hours of wind tunnel testing we’ve done with various Cervélo-sponsored pro athletes over the years confirms that for nearly all athletes, a lower bar means lower aero drag.

Keep in mind that hip angle isn’t the only limiter on lowering the torso. Saddle discomfort, digestion and vision are other common limiters. If an athlete is limited in these ways then shorter cranks won’t help get them any lower.

Some athletes keep their long cranks and still perform well. Some try short cranks, aren’t happy with the results and switch back again. Others keep the short cranks and tell us the following:
They pedal faster. The effort and foot speed is about the same, but the RPM is higher, typically about the same percentage higher as the change in crank length. For example, the difference between 165 and 175 is about 5%; some athletes find themselves in a gear about 5% easier than before, with a matching cadence about 5% higher. Coincidentally, the difference between a “compact” 50 tooth chain ring and a 53 is close to 5%. Likewise 20 and 21 teeth are about 5% different.

They adapted immediately. The leg muscles operate over a slightly shorter range of motion with shorter cranks, so no “new” muscle training is needed. Also the faster cadence doesn’t need to be learned or trained, because the foot speed (and thus the muscle fiber shortening velocity) is the same as before.

They feel more similar between aero and road bike positions. The typical idea is to rotate your road position into your aero position, but usually the torso rotates farther than the rest of the body. This closes the hip joint, and shorter cranks on the aero bike can maintain a hip angle more similar to that of their road position.

They can run better. Triathletes say the initial part of the run feels better coming from shorter cranks.

From this http://www.cervelo.com/en_us/news-blog/article/crank-length/2954/

Much better advice than the link above.
"Don't pedal harder, pedal faster!"
Q-FACTOR IS A RED HERRING

BB30.COM

by Weenie


Visit starbike.com Online Retailer for HighEnd cycling components
Great Prices ✓    Broad Selection ✓    Worldwide Delivery ✓

www.starbike.com



diegogarcia
Posts: 571
Joined: Sat Apr 24, 2010 7:31 pm

by diegogarcia

STARNUT wrote:For many athletes, the idea “longer is better” has changed in part because of Dr. Jim Martin’s 2001 study titled “Determinants of maximal cycling power: crank length, pedaling rate and pedal speed” (Eur J Appl Physiol (2001) 84: 413-418). Jim’s study involved 16 bike racers of various heights doing maximal sprint power tests, typically less than four seconds duration. During the study, they repeated the efforts while systematically testing the following crank lengths: 120, 145, 170, 195, and 220mm. Believe it or not, the test results showed no statistical difference in maximum power among the three middle crank lengths (145, 170 and 195mm). The saddle height (measured to the pedal) was maintained throughout and the researchers did not adjust fore-aft saddle position or handlebar height despite changes in pedal-to-knee relationship and handlebar drop with the various crank lengths. For years crank length tests had been inconclusive and the general working knowledge came more from experience and intuition than science. Now athletes can choose the crank length they like without worrying they’re affecting power.

With the leverage-dependency myth debunked to a certain degree, it was the application of these lessons which really drove the value of this study. The figure above graphically shows how the aerodynamic drag area (CdA) changed when four pro athletes tested multiple crank lengths in the wind tunnel. (Keep in mind lower CdA is better.) Rider1’s CdA increased (from 0.271 to 0.277 m2) when he changed from longer to shorter cranks (from 180 to 175mm), but the other three riders’ CdA stayed the same or decreased slightly when changing from longer to shorter cranks. The crank length and CdA data for each athlete is listed in the table below.

With maximum power essentially unaffected by a wide range of reasonable crank lengths, athletes are now free to choose crank length based on other criteria. Convenience (your might already have a serviceable crank on your bike), comfort, pedal clearance (to the ground), toe overlap; all of these are affected by crank length. However, what is now understood is that, especially in an aero riding position, shorter cranks can sometimes alleviate a common fit problem: if the hip angle is too tight at the top of the pedal stroke, the athlete can be uncomfortable, or is unable to produce maximum power at the top of the pedal stroke.

Even in athletes with no existing fit problem, some choose shorter cranks in order to further lower the torso by lowering the arm pads. Perhaps this is not a surprise, but the hours of wind tunnel testing we’ve done with various Cervélo-sponsored pro athletes over the years confirms that for nearly all athletes, a lower bar means lower aero drag.

Keep in mind that hip angle isn’t the only limiter on lowering the torso. Saddle discomfort, digestion and vision are other common limiters. If an athlete is limited in these ways then shorter cranks won’t help get them any lower.

Some athletes keep their long cranks and still perform well. Some try short cranks, aren’t happy with the results and switch back again. Others keep the short cranks and tell us the following:
They pedal faster. The effort and foot speed is about the same, but the RPM is higher, typically about the same percentage higher as the change in crank length. For example, the difference between 165 and 175 is about 5%; some athletes find themselves in a gear about 5% easier than before, with a matching cadence about 5% higher. Coincidentally, the difference between a “compact” 50 tooth chain ring and a 53 is close to 5%. Likewise 20 and 21 teeth are about 5% different.

They adapted immediately. The leg muscles operate over a slightly shorter range of motion with shorter cranks, so no “new” muscle training is needed. Also the faster cadence doesn’t need to be learned or trained, because the foot speed (and thus the muscle fiber shortening velocity) is the same as before.

They feel more similar between aero and road bike positions. The typical idea is to rotate your road position into your aero position, but usually the torso rotates farther than the rest of the body. This closes the hip joint, and shorter cranks on the aero bike can maintain a hip angle more similar to that of their road position.

They can run better. Triathletes say the initial part of the run feels better coming from shorter cranks.

From this http://www.cervelo.com/en_us/news-blog/article/crank-length/2954/

Much better advice than the link above.


Actually, much the same, just a lot longer ?!?!?

Post Reply